Identification of multiple mode models via Distributed Particle Swarm Optimization

نویسندگان

  • Ichiro Maruta
  • Toshiharu Sugie
  • Tae-Hyoung Kim
چکیده

This paper considers the identification of multiple-mode systems, and introduces a new method to estimate the subsystem parameters of piece-wise affine systems. First, the notion of multiplemode linear regression model and the way to reduce its identification problem to an optimization one are introduced. Second, since the introduced optimization problem is inherently ill-conditioned and nonconvex, a new technique named distributed PSO (particle swarm optimization) is developed to avoid being trapped in suboptimal solutions. The proposed identification scheme can handle the identification of piece-wise affine systems without any prior knowledge about their mode transitions and has no difficulty to handle a large number of data samples, which is an distinguished feature of the proposed method. Finally, an experiment with a set of I/O data from a DC motor system is given to demonstrate the effectiveness of the proposed identification method and to evaluate the performance of the proposed optimization technique.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Suppressing Vibration In A Plate Using Particle Swarm Optimization

In this paper a mesh-free model of the functionally graded material (FGM) plate is presented.  The piezoelectric material as a sensor and actuator has been distributed on the top and bottom of the plate, respectively. The formulation of the problem is based on the classical laminated plate theory (CLPT) and the principle of virtual displacements. Moreover, the Particle Swarm optimization (PSO) ...

متن کامل

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA DEMOCRATIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR STRUCTURAL DAMAGE PROGNOSIS

This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, ...

متن کامل

A discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain

This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011